Lecture 13

Chemical Engineering for Micro/Nano Fabrication

Diazonaphthoquinone-based Resists

Ralph Dammel

Intrinsic Reactivity — Quantum Yield

$$\Phi_{A} = \frac{\text{Molecules of "A" Consumed}}{\text{Photons of Light Absorbed}} = \frac{\text{Molecules}}{\text{Photon}}$$

$$\Phi_{\rm B} = \frac{\text{Molecules of "B" Produced}}{\text{Photons of Light Absorbed}}$$

Measurement of Φ Simplified in Solution

- 1. Solution optically dense so that all incident photons absorbed.
- Reactions run to low conversion so that rate of light absorption ~ constant
- 3. Diffusion is rapid in dilute solutions

Measurement More Difficult in Solid State

	Diazoquinones	$\Phi \sim 0.2 - 0.3$
ChE 384T / 323	Bis Azides	$\Phi \sim 0.5 - 1.0$

Radiation Induced Decomposition of Poly(methyl methacrylate), PMMA

Dependence of Molecular Weight on Dose for Polymers that Scission

Copolymers

$$\sim \begin{pmatrix} CH_3 \\ -L_2 - C - \\ CH_2 - C - \\ -L_2 - C - \\ C = 0 \\ OCH_3 \end{pmatrix}_m \begin{pmatrix} X \\ -L_2 - C \\ -L_1 \\ CH_2 - C \\ -L_1 \\ -L_2 \end{pmatrix}_n$$

"G" Values

Copolymer	(15 Kv) Sensitivity,	Gs
	µcoul/cm ²	
PMMA	40	1.5
PMMA-MA (X=CH3, Y=COOH)	35	2.0
PMMA-MAN (X=CH3, Y=CN)	12	3.1
PMMA-IB (X = CH_3 , Y = CH_3)	14	3.5
PMMA- & CL-Acrylate (X = CL)	14	3.3
PMMA- α CR-Acrylate (X = CN)	12	3.5
PMMA-MA-MANH	7	4.5 🛌

Lithographic Sensitivity CAUTION...

RESIST SENSITIVITY EXPRESSED IN TERMS OF DOSE/UNIT AREA IS LIKE AN EPA MILEAGE RATING... USE IT FOR COMPARISON ONLY. YOUR OWN MILEAGE WILL VARY DEPENDING ON...

Defocus Behavior: a 193 nm Resist

100nm (1:1.1) Trench DOF @ 38.0 mJ/cm²

Chemical Amplification

Hiroshi Ito

Jean Fréchet

Mercury Xenon Lamp Output

ChE 384 . . .

ChE 384T / 3__

Sloped Sidewalls In Novolac-Based DUV Resists

High unbleachable absorption leads to heavily sloped sidewalls in novolac-based resists imaged at 248 nm.

Photochemistry Counts Photons

Starting Material + Photon

→ Product

Energy/Photon, $E = hv = hc/\lambda$

As Wavelength Decreases, Energy/Photon Increases

- Fewer Photons are Available for a Given Exposure Measured in millijoules/area
- Mercury Lamp Produces far less Energy in the Deep UV
- Throughput Therefore Requires
 - -- Brighter Light Bulbs
 - -- More Sensitive Resists

Excimer Lasers are very bright "lights"

Excimer Lasers

Pulsed	or	CW?	:	Pulsed	

Pulsewidth : ~ ns to 1 μ s

Repetition Rate : <1 Hz to >1 kHz

Pulse Energy : μ J to J

Peak Power : < 1 KW to > 100 MW

Average Power : μ W to > 10 W

First Excimer Laser Lithography Experiment

 $1\mu m$ lines and spaces

0.5µm lines and spaces

XeCl Laser, λ = 308 nm Reciprocity proof!! AZ 2400 Resist

> JAIN et. al. IBM J. Res. & Develop. 26 (2) 15/ (82)

Single Component Negative Tone

²² ChE 384T / 323

Two Component Systems - Negative tone

Non-Swelling

~20 mJ/cm² sensitivity

Hitachi

(a) Experiment

Side Chain Deprotection Design

Is there an I-line like positive resist for DUV???

If this can be done in the DUV... it will require:

- New Photoactive Compound ..not DNQ
- •New Resin...not Novolac
- More light than an Hg lamp can provide

Ideal Sensitizer Characteristics

- High Extinction at 254nm
- High Quantum Efficiency
- Photoproducts Transparent at 254nm
- No Absorbance Above 300nm
- Useful Change in Polarity
- Thermal Stability
- Solubility
- Synthetic Access

Spectral Properties

Photolysis of o-Nitrobenzyl esters

Methacrylate resin

O-Nitrobenzylcholate

Candidate 1,3-Diacyl-2-diazo chromophores

- Bleach in the DUV.
- Good film forming properties.
- Quantum efficiency of ~ 0.3
- Carboxylic acid photoproducts
- *N*-substituted 3-diazopiperidine-2,4-diones
- O-substituted 3-diazo-7-hydroxy-4-oxocoumarin

Willson C. G., Miller R. D., McKean D. R., Pederson L. A., Regitz M.; *SPIE* Vol. 771 Advances in Resist Technology and Processing IV **1987**, 2.

Willson, C. G.; Leeson, M. J.; Yeuh, W.; Steinhausler, T.; McAdams, C. L.; Levering, V.; Pawolski, A.; Aslam, M.; Vicari, R.; Sheehan, M. T.; Sounik, J. R.; Dammel, R.R.; *Proc. SPIE*, **1997**, *22*, 226 Nishimura, et. al 6923-50 SPIE 2008

These systems are ALL FAR TOO SLOW!!

Control of Resist Sensitivity

A + XPhotons → B

$\Phi = B / X$ $B = [\Phi][X]$

•Increased Conversion of Product at Constant Dose Rate Demands:

–Increased absorption > X or

–Higher Quantum Efficiency > Φ

Chemical Amplification

